Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA
نویسندگان
چکیده
The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5' terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.
منابع مشابه
RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus
Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem-loop suggested an important hitherto unknown ...
متن کاملStructure and stability of RNA/RNA kissing complex: with application to HIV dimerization initiation signal.
We develop a statistical mechanical model to predict the structure and folding stability of the RNA/RNA kissing-loop complex. One of the key ingredients of the theory is the conformational entropy for the RNA/RNA kissing complex. We employ the recently developed virtual bond-based RNA folding model (Vfold model) to evaluate the entropy parameters for the different types of kissing loops. A benc...
متن کاملPredicting structure and stability for RNA complexes with intermolecular loop-loop base-pairing.
RNA loop-loop interactions are essential for genomic RNA dimerization and regulation of gene expression. In this article, a statistical mechanics-based computational method that predicts the structures and thermodynamic stabilities of RNA complexes with loop-loop kissing interactions is described. The method accounts for the entropy changes for the formation of loop-loop interactions, which is ...
متن کاملPredicting structure and stability for RNA complexes with intermolecular loopâ•filoop base-pairing
RNA loop–loop interactions are essential for genomic RNA dimerization and regulation of gene expression. In this article, a statistical mechanics-based computational method that predicts the structures and thermodynamic stabilities of RNA complexes with loop–loop kissing interactions is described. The method accounts for the entropy changes for the formation of loop–loop interactions, which is ...
متن کاملImpact of human immunodeficiency virus type 1 RNA dimerization on viral infectivity and of stem-loop B on RNA dimerization and reverse transcription and dissociation of dimerization from packaging.
The kissing-loop domain (KLD) encompasses a stem-loop, named kissing-loop or dimerization initiation site (DIS) hairpin (nucleotides [nt] 248 to 270 in the human immunodeficiency virus type 1 strains HIV-1(Lai) and HIV-1(Hxb2)), seated on top of a 12-nt stem-internal loop called stem-loop B (nt 243 to 247 and 271 to 277). Destroying stem-loop B reduced genome dimerization by approximately 50% a...
متن کامل